7 research outputs found

    Balanço ex-ante dos gases do efeito estufa nos programas de desenvolvimento na agricultura e em florestas

    Get PDF
    EX-ACT (Ex-Ante Carbon-balance Tool, ferramenta para o balanço ex-ante de Carbono) é desenvolvida pela Organização das Nações Unidas para Agricultura e Alimentação (FAO). Tem como finalidade de fornecer estimativas ex-ante do impacto de atenuação na agricultura e nos projetos de desenvolvimento florestal, estimando o saldo líquido das emissões dos gases do efeito estufa (GEE) e do seqüestro de carbono (C). EX-ACT é um sistema de contabilidade que considera o uso da terra, medindo estoques de C, mudanças do estoque por unidade de área, e emissões de CH4 e N2O expressos em CO2-eq por hectare e por ano. O resultado principal da ferramenta é uma estimativa do balanço de CO2-eq associados à adoção de opções de melhoria do manejo da terra, em comparação com um cenário chamado de "business as usual". EX-ACT foi desenvolvida usando principalmente as recomendações de 1996 para estabelecer os inventários nacionais de GEE (Guidelines for National Greenhouse Gas Inventories IPCC, 2006) complementada por outras metodologias existentes e coeficientes padrão especificos quando disponíveis. Os valores padrão para as opções de mitigação no setor agrícola são na sua maioria provenientes do 4º Relatório de Avaliação do IPCC (2007). Assim, EX-ACT estima o balanço de C dos novos programas de investimentos, garantindo um método adequado e disponível para financiadores e agentes de planejamento, projetistas, e governantes para os setores da agricultura e da silvicultura nos países em desenvolvimento. A ferramenta também pode ajudar a identificar os impactos de atenuação de opções possíveis em vários projetos de investimento, e assim fornecer um critério adicional para escolhê-las como parte dos projetos.EX-ACT (EX-Ante Carbon-balance Tool) is a tool developed by the Food and Agriculture Organization of the United Nations (FAO). It provides ex-ante measurements of the mitigation impact of agriculture and forestry development projects, estimating net C balance from GHG emissions and Carbon (C) sequestration. EX-ACT is a land-based accounting system, measuring C stocks, stock changes per unit of land, and CH4 and N2O emissions expressed in t CO2-eq per hectare and year. The main output of the tool is an estimation of the C-balance associated with the adoption of improved land management options, as compared with a "business as usual" scenario. EX-ACT has been developed using primarily the IPCC 2006 Guidelines for National Greenhouse Gas Inventories, complemented by other existing methodologies and reviews of default coefficients. Default values for mitigation options in the agriculture sector are mostly from the 4th Assessment Report of IPCC (2007). Thus, EX-ACT allows for the carbonbalance appraisal of new investment programmes by ensuring an appropriate method available for donors and planning officers, project designers, and decision makers within agriculture and forestry sectors in developing countries. The tool can also help to identify the mitigation impacts of various investment project options, and thus provide an additional criterion for consideration in project selection

    Rapid assessments and local knowledge reveal high bird diversity in mangroves of north-west Madagascar

    Get PDF
    Although the importance of regulating and provisioning services provided by mangroves is widely recognised, our understanding of their role in the maintenance of terrestrial biodiversity is patchy globally and largely lacking for many regions, including conservation priorities such as Madagascar. We carried out the first multi-site bird inventory of mangroves in Madagascar and complemented our data with assessments of local knowledge, in order to broaden our knowledge of which species use this habitat. We directly observed 73 species across three sites in Ambanja and Ambaro Bays, while local respondents indicated the presence of 18 additional species: four observed species are globally threatened, while 37 are endemic to Madagascar or the Malagasy region. Over half the species observed are typically terrestrial, of which 22 have not previously been recorded in mangrove habitats in Madagascar. Local knowledge provided a useful complement to our observed data but we are likely to have underestimated total richness; nevertheless, our findings greatly increased our knowledge of mangrove use by Madagascar’s birds. However, further research is required to investigate the functional role of mangroves in the ecology of the observed species and provide insights into the factors influencing mangrove use

    The Mangroves of Ambanja and Ambaro Bays, Northwest Madagascar: Historical Dynamics, Current Status and Deforestation Mitigation Strategy

    No full text
    Madagascar contains Africa’s fourth largest extent of mangroves, representing approximately 2% of the global distribution. Since 1990, more than 20% of Madagascar’s mangrove ecosystems have been heavily degraded or deforested due primarily to increased harvest for charcoal and timber and the expansion of agriculture and aquaculture. Anthropogenic-driven loss is particularly prominent in the north-western Ambanja and Ambaro Bays (AAB). At over 24,000 ha, AAB is one of Madagascar’s largest mangrove ecosystems, including prominent estuaries fed by rivers and streams originating in the country’s highest mountain range. Similar to the national rate, AAB has experienced approximately 20% loss since 1990, driven primarily by over-harvesting for charcoal and timber. Continued loss threatens the livelihoods and wellbeing of thousands of residents who rely on the many goods and services provided by a healthy, relatively intact mangrove ecosystem. To combat this loss, Blue Ventures (BV), in partnership with local communities and the University of Antananarivo, is working to protect, restore and encourage the sustainable use of mangroves. BVs’ Blue Forests project aims to help maintain and diversify local livelihoods and to sustainably manage mangroves and their associated biodiversity in AAB, as well as throughout western Madagascar. This chapter provides an overview of the biophysical characteristics, historic dynamics and current status of the AAB mangrove ecosystem, and mitigation strategies being implemented through BVs’ Blue Forests project

    Madagascar’s Mangroves: Quantifying Nation-Wide and Ecosystem Specific Dynamics, and Detailed Contemporary Mapping of Distinct Ecosystems

    Get PDF
    Mangrove ecosystems help mitigate climate change, are highly biodiverse, and provide critical goods and services to coastal communities. Despite their importance, anthropogenic activities are rapidly degrading and deforesting mangroves world-wide. Madagascar contains 2% of the world’s mangroves, many of which have undergone or are starting to exhibit signs of widespread degradation and deforestation. Remotely sensed data can be used to quantify mangrove loss and characterize remaining distributions, providing detailed, accurate, timely and updateable information. We use USGS maps produced from Landsat data to calculate nation-wide dynamics for Madagascar’s mangroves from 1990 to 2010, and examine change more closely by partitioning the national distribution in to primary (i.e., \u3e1000 ha) ecosystems; with focus on four Areas of Interest (AOIs): Ambaro-Ambanja Bays (AAB), Mahajamba Bay (MHJ), Tsiribihina Manombolo Delta (TMD) and Bay des Assassins (BdA). Results indicate a nation–wide net-loss of 21% (i.e., 57,359 ha) from 1990 to 2010, with dynamics varying considerably among primary mangrove ecosystems. Given the limitations of national-level maps for certain localized applications (e.g., carbon stock inventories), building on two previous studies for AAB and MHJ, we employ Landsat data to produce detailed, contemporary mangrove maps for TMD and BdA. These contemporary, AOI-specific maps provide improved detail and accuracy over the USGS national-level maps, and are being applied to conservation and restoration initiatives through the Blue Ventures’ Blue Forests programme and WWF Madagascar West Indian Ocean Programme Office’s work in the region

    The Dynamics, Ecological Variability and Estimated Carbon Stocks of Mangroves in Mahajamba Bay, Madagascar

    No full text
    Mangroves are found throughout the tropics, providing critical ecosystem goods and services to coastal communities and supporting rich biodiversity. Globally, mangroves are being rapidly degraded and deforested at rates exceeding loss in many tropical inland forests. Madagascar contains around 2% of the global distribution, >20% of which has been deforested since 1990, primarily from over-harvest for forest products and conversion for agriculture and aquaculture. While historically not prominent, mangrove loss in Madagascar’s Mahajamba Bay is increasing. Here, we focus on Mahajamba Bay, presenting long-term dynamics calculated using United States Geological Survey (USGS) national-level mangrove maps contextualized with socio-economic research and ground observations, and the results of contemporary (circa 2011) mapping of dominant mangrove types. The analysis of the USGS data indicated 1050 hectares (3.8%) lost from 2000 to 2010, which socio-economic research suggests is increasingly driven by commercial timber extraction. Contemporary mapping results permitted stratified sampling based on spectrally distinct and ecologically meaningful mangrove types, allowing for the first-ever vegetation carbon stock estimates for Mahajamba Bay. The overall mean carbon stock across all mangrove classes was estimated to be 100.97 ± 10.49 Mg C ha−1. High stature closed-canopy mangroves had the highest average carbon stock estimate (i.e., 166.82 ± 15.28 Mg C ha−1). These estimates are comparable to other published values in Madagascar and elsewhere in the Western Indian Ocean and demonstrate the ecological variability of Mahajamba Bay’s mangroves and their value towards climate change mitigation
    corecore